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Abstract: Broad-base agricultural terraces can be difficult to delineate in flat landscapes, particu-
larly when covered by crops, due to subtle changes in elevation over relatively wide distances. In
northeastern Oklahoma, these terraces are usually less than half a meter high and 15 to 20 m wide.
The objective of this research was to develop and test a technique for identifying and classifying
terraces using computer vision applied to terrain derivatives calculated from digital elevation models
at five sites. We tested 38 terrain-derivative grid combinations or sets that represented 19 terrain
characteristics, calculated from elevation models after two Gaussian smoothing strategies to provide
some degree of generalization and a removal of excess noise. The best subsets achieved a 98% classi-
fication accuracy (kappa 0.96) and consisted of derivatives representing hydrology, morphometry,
and visibility categories. Inaccuracies occurred primarily at the edges of some of the study sites,
where agricultural fields bordered incised drainage areas where changes in elevation were similar to
those for the terraces. Further study will elucidate the relationships between terrace “borrow” and
“deposition” areas in the terrace areas and their relationships to yield and salinity issues. This work
seeks to automate terrace identification for digital soil mapping on terraced fields for the improved
delivery of soil information for resource conservation and land use.

Keywords: terrain derivatives; computer vision; digital elevation models; terraces; classification;
topographic wetness index; Oklahoma; soils; broad-base terraces

1. Introduction

Agricultural terraces are landscape features built to conserve soil and water that are
usually designed to increase arable land surface area when slopes are a limiting factor [1].
They are effective in producing positive benefits including reducing surface erosion by
slowing the speed of runoff and sediments, increasing groundwater infiltration through
the obstruction of overland flow paths, reducing flood hazards, and decreasing the risk of
gully erosion and ravine formation by lowering the kinetic energy of water as it moves
over the surface [2]. Not all terraces are built the same way or with the same purpose and
the term “terrace” refers to a range of structures that can address different problems [3].

Terraces built in Ottawa County in northeast Oklahoma are somewhat unusual because
the landscapes in which they occur are predominantly flat, rather than sloping. The typical
need for terracing to increase arable land area on otherwise highly sloping hillsides, for
instance, does not apply. Terraces in this region can be characterized as contour or parallel
terraces, rather than the bench terraces more commonly found in steep areas, and are
sometimes called broad-base terraces [4,5]. As with other terrace types, they are designed
to disrupt natural overland flow to conserve water by reducing slope length and intercept
runoff, thereby conserving soil and water throughout a growing season that often has
periods when evapotranspiration exceeds rainfall [4–6]. Because of the relatively flat
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landscape in which these terraces occur, the height needed to provide a disruption of
overland flow is much less than terraces typical in more sloping areas.

Partly because of their low profile, the broad-base terraces in Ottawa County, Okla-
homa, are subtle and sometimes difficult to identify. They feature no retaining walls and
are constructed of adjacent soil mounded in an elongated ridge shape. In many cases, they
follow the contour lines of the slopes, though the slopes are nearly flat (less than 1 percent).
Terraces may be difficult to identify across the landscape as they may be covered by crops,
have relatively low elevation differences from the surrounding landscape, and have a broad
and low relief.

Some authors have applied edge detection and image analysis to identify terraces
using digital elevation models (DEM) and land reflectance imagery [7]. However, these
methods were developed in areas with sloping landscapes and terraces built with treads
and risers and do not function adequately in the flat landscapes with broad-base terraces
as found in NE Oklahoma. In this study, we attempted to use computer vision applied
to terrain derivatives extracted from DEMs to increase our understanding of the spatial
locations and patterns of terraces in several study areas.

Terrain derivatives are mathematically derived raster or gridded objects calculated
from DEMs through the application of algorithms [8,9]. Terrain derivatives highlight
aspects of relative changes in elevation. Perhaps the most familiar terrain derivative
is slope, which is a first derivative and quantifies the rate of change in elevation over
distance [9]. It can be calculated for every grid cell or pixel in an elevation model based
on the cell’s relationship to neighboring cells. Curvature, another example of a terrain
derivative, is the rate of change in the tangent vector over a curved surface, moved for some
distance [8]. Many terrain derivatives have been developed and tested to describe and
quantify features of landscapes [9]. These include line-of-site of neighborhood algorithms,
solar radiance and incidence simulations, hydrologic simulations, local morphometry,
and others [9,10].

The purpose of the current study is to develop a technique using high-resolution
DEMs to delineate terraces in flat landscapes so they can be efficiently identified. Auto-
matically delineating terraces will facilitate the study of their influence on agricultural
productivity and soil and water conservation. We sought to automate terrace identification
through the supervised classification of terrain derivatives calculated from a DEM. We
attempted to classify and delineate terraces throughout the Ottawa County farm field
areas through the segmentation of elevation models of the area into terrace space and
non-terrace space using neural networks and random forest algorithms in a supervised
classification approach applied to terrain derivatives. The algorithms were trained with
known terrace areas and verified using known terrace and non-terrace areas in similar
fields. Terrain derivatives were then assessed and ranked according to their usefulness
in the classification algorithms for the study sites. The goal was to develop a technique
for identifying terraces in predominantly flat landscapes that can be transferred to any
agricultural site for quick terrace delineation, for applications such as the assessment of
conservation best management practices, terrace maintenance, and yield monitoring. The
hypothesis was that artificial intelligence (AI) computer vision applied to digital elevation
derivatives can delineate terrace features that are otherwise difficult to find and laborious
to delineate by hand. To our knowledge, no one has attempted to use computer vision
techniques applied to terrain derivatives to delineate terraces in flat landscapes.

2. Materials and Methods
2.1. Study Sites

The study sites are in northeast Oklahoma (centered at approximately 36.95 latitude,
−94.79 longitude) (Figure 1). The climate is humid subtropical with a mean annual precipi-
tation of around 1150 mm and a mean annual temperature of 14.6 ◦C. The major land use
of the area is the production of hay and grain crops, with soybeans and corn dominating.
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Figure 1. A schematic diagram for the analysis and production of terrace location classifications used
in the paper.

2.2. Data Sources and Processing

We obtained a 1 m resolution digital elevation model made with laser altimetry for
five agricultural research sites in northeast Oklahoma from the United States Geological
Survey 3DEP program [11]. Data were acquired between 23 October and 8 November 2018,
during leaf-off conditions using a light-detection and ranging (LiDAR) AP60 220-channel
dual-frequency global navigation satellite system (GNSS) receiver mounted on a Cessna
401 aircraft [11]. The nominal pulse spacing for acquisition was 0.7 m and the fundamen-
tal vertical accuracy was tested at 8 cm. LiDAR, or air-borne laser altimetry bare-earth
returns, were converted to 1 m digital elevation model (DEM) grids through bilinear
interpolation [12]. The DEM is freely available to the public through the USGS website [11].

Elevation model preparation and terrain derivatives were calculated with SAGA–GIS
software (v. 8.0.1). Prior to terrain analysis the elevation model was filtered with Gaussian
low-frequency spatial filtration to remove noise, excessive surface detail, and any spurious
values through averaging. The filtration was undertaken at 2.5 sigma and 5.0 sigma to rep-
resent minimal or mild smoothing and strong smoothing, respectively. Sigma is expressed
in meters and represents the standard deviation of the imposed Gaussian curve for calculat-
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ing the mean of the central pixel. Low-frequency spatial filtering was chosen to minimize
high-frequency noise in the original DEM and has been shown to improve relationships
between terrain derivatives and ground truth [8,9,13,14]. The elevation models to be used
for calculating terrain derivatives related to hydrologic simulations were further processed
to remove spurious pits and peaks [15]. The terrain derivatives that were tested for their
usefulness for identifying agricultural terraces in flat landscapes are indicated in Table 1.
Each terrain derivative was evaluated twice, once on the mild smoothing DEM (2.5 sigma)
and once on the strong smoothing DEM (5.0 sigma) (Figure 1).

Table 1. The terrain derivatives calculated from the digital elevation model and used to classify the terraces.

Terrain Derivatives Type Description Source

Slope Morphometric Change in elevation over distance [16]

Plan curvature Morphometric Rate of change in slope orthogonal to direction of steepest slope [16]

Profile curvature Morphometric Rate of change in slope down a flow line [16]

Tangential curvature Morphometric Plan curvature multiplied by the sine of the slope angle [16]

General curvature Morphometric General curvature of the surface [17]

Aspect Morphometric Radial direction of maximum downward gradient [16]

Convergence index Morphometric Average bias of slope directions of adjacent cells [18]

Topographic position index Morphometric Difference between a cell’s elevation and the mean elevation calculated
for surrounding cells [19]

Multi-resolution index of
valley-bottom flatness Morphometric Degree of similarity between the pixel and a class of flat low-lying areas [20]

Slope height Morphometric Relative height difference to the immediately adjacent crest lines [10]
[21]

Valley depth Morphometric Relative height difference to the immediately adjacent channel lines [10]
[21]

Standardized height Morphometric Elevation raster with standardized histogram of values [10]

Flow accumulation Hydrological Area of upland cells draining to a given cell, assuming multi-directional
downhill flow [22]

Specific catchment area Hydrological Upslope-contributing area divided by the contour width [9,22]

Topographic wetness index Hydrological Specific catchment area divided by the natural logarithm of the slope
(multiple-flow-direction method, convergence index = 1.1) [22,23]

Morphometric protection index Visibility Lowness of the central cell relative to surrounding cells within
a specified distance [17]

Negative terrain openness Visibility Angular measure of the relation between surface relief and horizontal
distance constrained by surrounding elevation [24]

Sky view factor Visibility The ratio of diffuse irradiance at a pixel to that on an unobstructed
horizontal surface [25]

Visible sky Visibility The percentage of the hemisphere that is visually unobstructed by
surrounding terrain [26]

To test the effectiveness of the terrain derivatives for classification, subset areas of the
known terraces were identified in the field and delineated by hand in SAGA–GIS after
on-site investigation and corroboration between imagery, measurements, and elevation
models. One hundred and twenty five digital polygons were hand-drawn to indicate
portions of known and visited terrace areas and non-terrace areas in the five test sites.
Terraces included disturbed land both upslope and downslope of the terrace, including
“borrow” areas from which soil was taken in the construction process, and “deposition”
areas where soil was mounded. Land uses other than agriculture, such as riparian zones,
constructed areas, and strip mines adjacent to the sites did not influence the classifications
within the agricultural areas and were ignored. Half of the 125 hand-delineated polygons
were assigned to a training group and half were assigned to a validation group using
a random number selection criterion. The training group was used to train the image
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classification algorithms and the validation group was used to assess the success of the
classification algorithms and the usefulness of the terrain derivatives.

2.3. Terrace Modeling

In the first iteration of the classification task, a full suite of terrain derivatives was used
to train the random forest classifier using the program ViGRA (Computer Vision Library Ver-
sion 1.11.1) [18,27] within the SAGA-GIS environment. Random forest is a non-parametric,
machine learning approach where ensembles of classification decision trees are optimized
to make the final prediction model [28]. Thirty-eight iterations or sets of terrain derivative
combinations, including each of the 19 derivatives from Table 1, were calculated using the
two elevation models after the Gaussian filtration levels were applied. Permutation-based
feature importance scores were assigned by the program to each terrain derivative for each
of the 28 iterations (model runs). Permutation-based feature importance is a measure of
how much the removal of any given feature influences model performance and is used in
feature selection to find the most important subsets of variables [29,30]. RF models were
run with the terrain derivatives with the best importance score, that is, the derivatives
with the highest permutation importance values. In each iteration, the derivatives from the
previous run with the lowest permutation importance scores were removed. The following
numbers of terrain derivatives were used successively: 38 (full model), 32, 27, 22, 17, 12, 10,
8, 6, 5, 4, 3, 2, and 1.

2.4. Model Evaluation

Each model run was assessed using a confusion matrix approach, whereby the vali-
dation set of terraces and non-terrace areas were used as ground truth to determine the
number of image pixels correctly and incorrectly classified by the random forest model. The
optimum number and type of terrain derivatives were determined to maximize the kappa
score and the overall accuracy of prediction [31]. The kappa score reflects the accuracy of
categorization while accounting for the accuracy expected by random chance selection [31].

Other supervised classification methods were then tested with the top-performing
suite of terrain derivatives. The tested classification methods were artificial neural net-
works, boosting, k-nearest neighbors, decision tree, normal Bayes, and support vector
machines. These algorithms were run in the OpenCV library within SAGA-GIS [18,27].
Their accuracy was assessed in the same way as the random forest algorithm, with kappa
and overall accuracy.

3. Results
3.1. Terrace Characteristics

At the five research sites, the average change from the highest elevation to the lowest
was less than one percent, indicating a predominantly flat landscape for all sites (Table 2,
Figure 1). Elevation highs sometimes occurred mid-field and sometimes at field edges, with
elevation lows typically at the field edges most distal from the high areas, approaching
natural drainageways (Figure 2).

Table 2. Elevation and average slope of study sites.

—–Elevation—–

Site High Low Change Distance Slope

—————–meters—————– -%-

BR 257.2 253.1 4.1 823 0.50

BN 258.5 254.7 3.8 490 0.78

SN 258.7 255.8 2.9 665 0.44

MS 262.0 255.8 6.2 817 0.76

KO 259.6 255.5 4.1 549 0.75
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Figure 2. The five research sites used for this study in Ottawa County, Oklahoma. The images in
the first column are visible reflectance data taken from the National Agricultural Imagery Program
dataset [32], showing some indication of terracing patterns. Site boundaries are outlined in yellow
and site identification codes are given in black letters on a gray background. The center column
shows a hillshade model derived from the digital elevation model [11] for each site, with terrace
features faintly visible as shaded linear regions. Higher relative elevations are given a lighter shade
of gray, and lower elevations are darker. The third column shows the results of the top performing
classification algorithm as green linear features covering the predicted regions of terraces, their
“borrow” zones from the uphill side, and their “deposition” zones on the downhill side.
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Elevation differences influenced by terraces can be seen in the elevation transect for
the BN site (Figure 3). Here, the elevation decreases from the high point near the middle
of the field to the low point at the southwest portion. Along the transect, we see localized
elevation differences, or bumps, of approximately 50 cm over approximately 20 m. This
range in local elevation varies slightly from one terrace to another, but in all cases the
uphill side of the terrace is lower than the trend of elevation immediately uphill, indicating
a “borrow” zone from which soil was taken to be mounded on the area immediately
downhill. Several terrain derivatives showed changes in magnitude related to these bumps.
The most visually obvious pattern was seen with the topographic wetness index [22,23]
where simulated overland flow is disrupted by the presence of the elevation bumps, leading
to a spike in TWI values immediately upstream from the terrace, and a sharp decline on
the terrace itself (Figure 3). These value spikes, both positive and negative, were indicative
of terrace presence. The negative openness algorithm [24] likewise showed spikes at the
terrace locations, but this time in the negative direction (Figure 3), indicating micro-troughs
in which sky visibility is obstructed by surrounding terrain.
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Image (C) shows an iteration of the topographic wetness index (TWI), with higher values given in 

Figure 3. The black line in image (A) indicates an elevation transect from the highest elevation at the
BN site to the area of lowest elevation. Image (B) shows a color ramp for elevation at the site. Image
(C) shows an iteration of the topographic wetness index (TWI), with higher values given in blue and
lower values in red. Image (D) shows the variation in values of selected terrain derivatives along the
transect, including topographic wetness index at both levels of smoothing, and the negative openness
algorithm after DEM Gaussian smoothing to 2.5 sigma.

3.2. Terrace Delineation Accuracy

Terrain derivatives were useful for delineating terraces with up to 98.4% accuracy and
kappa of 0.961 with the random forest algorithm (Figures 4 and 5). Random forest was
the best performing algorithm, but others also provided a good performance (Figure 4).
The optimum number of terrain derivatives for classifying terraces in the area varied from
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three to seven, with five performing the best (Figure 5). This indicates that the complexity of
the terrace features is relatively easy to classify with a limited number of terrain derivatives
if they are chosen carefully. When the number of terrain derivatives was optimized to
classify the terraces, terrace delineation showed strong cohesion and adherence to the field-
observed locations of terraces, as indicated in the green-colored areas in the third column
of Figure 2. Model performance decreased slightly in the field sites when 10, 22, and
38 derivative calculations were included, likely indicating some potential problems with
overfitting (Figure 5). Likewise, when only 1 or 2 derivatives were included, performance
decreased, probably because the terrace features are complex enough (with micro-highs on
the terraces themselves and micro-lows in the borrow zones) that a very small number of
derivatives are unable to capture the complete dynamics of the terrace complexity.
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Figure 4. Model accuracy for identifying terraces using the best performing subset of five terrain attributes.

3.3. Terrace Delineation Response to Smoothing and Terrain Derivative Parameters

The five derivatives in the best model were the topographic wetness index applied
to the minimally smoothed DEM (2.5 sigma) and strongly smoothed DEM (5.0 sigma),
the negative openness algorithm minimally smoothed, the profile curvature minimally
smoothed, and general curvature minimally smoothed (Figure 6). This optimization shows
that terrain derivatives of various types are useful, with visibility, morphometric, and
hydrologic derivatives all playing a role in terrace delineation. The best performances
included all three categories of terrain derivative. When one or more derivatives from
these categories were omitted, the performance of the classifying algorithm suffered. This
makes sense as each category provides a somewhat unique lens with which to examine
landscapes. Hydrologic derivatives examine the connectivity of pixels; visibility derivatives
relate to the ways in which a landscape is hidden or exposed by surrounding land features;
and morphometric derivatives provide a direct mathematical measure of the relation of
a pixel to its immediate neighbors. All these aspects of analysis apparently contribute to
the accurate identification and delineation of terraces.



Land 2023, 12, 486 9 of 12Land 2023, 12, x FOR PEER REVIEW 10 of 14 
 

 

Figure 5. Accuracy of terrace classification using supervised classification random forest algorithm 

with full model and subsequent subsets after eliminating terms with lowest importance scores. 

3.3. Terrace Delineation Response to Smoothing and Terrain Derivative Parameters 

The five derivatives in the best model were the topographic wetness index applied 

to the minimally smoothed DEM (2.5 sigma) and strongly smoothed DEM (5.0 sigma), the 

negative openness algorithm minimally smoothed, the profile curvature minimally 

smoothed, and general curvature minimally smoothed (Figure 6). This optimization 

shows that terrain derivatives of various types are useful, with visibility, morphometric, 

and hydrologic derivatives all playing a role in terrace delineation. The best performances 

included all three categories of terrain derivative. When one or more derivatives from 

these categories were omitted, the performance of the classifying algorithm suffered. This 

makes sense as each category provides a somewhat unique lens with which to examine 

landscapes. Hydrologic derivatives examine the connectivity of pixels; visibility deriva-

tives relate to the ways in which a landscape is hidden or exposed by surrounding land 

features; and morphometric derivatives provide a direct mathematical measure of the re-

lation of a pixel to its immediate neighbors. All these aspects of analysis apparently con-

tribute to the accurate identification and delineation of terraces. 

0.75

0.80

0.85

0.90

0.95

1.00

0 5 10 15 20 25 30 35 40

Number of terrain attributes used in model (best subsets)

Model Accuracy

Kappa

Overall Accuracy

Figure 5. Accuracy of terrace classification using supervised classification random forest algorithm
with full model and subsequent subsets after eliminating terms with lowest importance scores.
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Curvature calculations are from [16].
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4. Discussion

The identification of terraces in NE Oklahoma is important for several reasons. The
maintenance and assessment of terrace function is periodically needed as improperly
maintained terraces can increase soil and water loss through erosion, increase surface
runoff, and decrease infiltration rates [1,32–34]. Terracing can also influence crop yields,
usually increasing yields, but in some cases decreasing them [35–41]. Further research on
the effectiveness of terracing as a conservation tool is required as the extent to which terraces
improve ecosystem services is not well established [36]. Therefore, the identification and
assessment of terrace effectiveness is needed.

The terraces in Ottawa County, Oklahoma, usually rise less than half a meter in a ridge
shape over a profile that can be 20 m in cross-section from the edge of the zone from which
soil is taken on the uphill side of the terrace to the edge of the disturbed zone on the
downhill side of the terrace [4,5]. When crops are covering agricultural fields, a terrace
feature of this scale in this landscape is not obviously identifiable. Even in a bare field, the
subtlety of the rise over the length of the run can make identification challenging.

In Ottawa County, Oklahoma, anecdotal evidence suggests that terrace areas and
areas immediately adjacent to terraces on the uphill and downhill sides had increased
yield variability in some years of observation. This is not surprising as the soil on both the
uphill and downhill sides of a broad-base terrace, as well as the soil on the terrace itself, are
in a disturbed state because of the terrace construction dynamics [4,5]. The construction
involves heavy machinery, such as bulldozers or other earth-moving equipment and
requires the scraping or removal of surface soil from an uphill borrow zone to a downhill
deposition zone [4,5]. Compaction from machinery and the removal of A-horizon material
can negatively influence yield [42]. Other researchers reported trends in yield variability
on terraces in various landscape positions in Rwanda [41]. To test the hypotheses relating
terraces to yield in Ottawa County, Oklahoma, terrace locations first had to be delineated
for crop fields where yield monitoring data was available throughout the region. The
influence of terraces on yield in Ottawa County is covered in a separate paper.

A few areas within the study sites were clearly misclassified, such as the northeastern
edge of the lower MS field (Figure 2). This misclassification was likely due to the change
in elevation over short distances associated with the incised stream channel immediately
downhill from the field edge. To a lesser extent, the same shortcomings in classification
accuracy are seen in the western boundary of the KO site, ostensibly for the same reason,
namely proximity to natural incised drainageways. Furthermore, when the model was
applied to areas that were clearly not agricultural fields, it failed to delineate meaningfully
and provided irrelevant output. It should be noted, however, that when used strictly in
agricultural fields, the accuracy of the random forest method with the best-performing
terrain derivative suite provided sufficient accuracy for delineating the terrace features of
the agricultural fields.

5. Conclusions

In this study, we developed a step-by-step process for delineating terraces in flat terrain.
The results of this study highlight the usefulness of terrain derivatives for identifying and
delineating terrace features in flat landscapes. Computer vision, most particularly the
random forest algorithm, is effective at classifying terraces and non-terrace areas when
trained on terrain derivatives that are responsive to the sudden or subtle shifts in elevation
associated with terrace features in flat landscapes.

Future work will examine the various zones within the terrace structure at the study
sites to determine yield response and salinity issues in the uphill “borrow” zone vs. the
downhill “deposition” zone. The broader landscape of the region contains many terrace
features on other sites that can be studied after the terraces are identified and delineated
with sufficient accuracy. This work is foundational for automating digital soil mapping for
terraced fields to improve the delivery of spatial soil information to support soil resource
conservation and water management at field and farm levels.
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